If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+84x-36=0
a = 49; b = 84; c = -36;
Δ = b2-4ac
Δ = 842-4·49·(-36)
Δ = 14112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14112}=\sqrt{7056*2}=\sqrt{7056}*\sqrt{2}=84\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-84\sqrt{2}}{2*49}=\frac{-84-84\sqrt{2}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+84\sqrt{2}}{2*49}=\frac{-84+84\sqrt{2}}{98} $
| 10x-17=19+12x | | 3(x-2)=2x+2+5x | | 5x-89=79-3x | | x+0.2=70 | | 26=2x+16 | | (y-9)(y+4)=0 | | -9x-8(3x-12)=-24-3x | | -1-8(13+5p)=55-8p | | -4x+2(2x-3)=5 | | 16z=24=8(2z-3) | | 56+14a=-6(-13a+1)-2 | | 3x+7-4(x+2)=-x+15 | | 2|4x-4|-7=2 | | .5x^2-2x-2.5=0 | | -5=3b+-4 | | -4(2x-9)=8x-36 | | 32-11p=10p-13(p-8) | | -16+4x=4x-16 | | 12k+k=-22+4k+7k | | 7x-196=-10x+127 | | 2x-12=4-3x+7x | | 19(-4c)=17 | | 28=-4/9v | | 20+9k=-20-11k | | 9=2a=-3-4a | | 3x+7-4(x+1)=12x+1 | | -81+11x=15x+43 | | x/3+x/5=8/6 | | 2x+(x+46)=115 | | 12-3x+9=11 | | 2(5x-5)=6x/50 | | 5x-1=76 |